ON A CERTAIN TYPE OF COMMUTATORS OF OPERATORS

BY MENDEL DAVID

ABSTRACT

Let H be a separable infinite-dimensional Hilbert space and let C be a normal operator and G a compact operator on H. It is proved that the following four conditions are equivalent.

- 1. C + G is a commutator AB-BA with self-adjoint A.
- 2. There exists an infinite orthonormal sequence e_j in H such that $|\sum_{i=1}^{n} (Ce_i, e_i)|$ is bounded.
- 3. C is not of the form $C_1 \oplus C_2$ where C_1 has finite dimensional domain and C_2 satisfies inf $\{ |(C_2x, x)| : ||x|| = 1 \} > 0$.
 - 4. 0 is in the convex hull of the set of limit points of sp C.
- 1. Introduction. Let H be a separable infinite-dimensional Hilbert Space. The class of commutators AB-BA where A is a (bounded linear) hermitian operator and B is an arbitrary (bounded linear) operator on H will be denoted, as in [2], by X_H . The symbol Y_H denoting in [2] the subclass of commutators of X_H for which B is of the form iD where D is hermitian, will also be used here and will have the same meaning.

The class Y_H which is identical with the class of hermitian operators in X_H , was studied by H. Radjavi in [3]. His main result can be stated as follows:

- (*) Each of the following three conditions is necessary and sufficient for a hermitian operator C to belong to Y_H .
 - a) There exists an infinite orthonormal sequence e_i in H such that

$$\left|\sum_{j=1}^{n} (Ce_j, e_j)\right| \text{ is bounded.}$$

b) C is not of the form $C_1 \oplus C_2$ where C_1 has finite dimensional domain and C_2 satisfies the condition

$$\inf_{\|x\|=1} \left| (C_2 x, x) \right| > 0.$$

c) 0 is in the convex hull of the set of limit points of sp C.

We recall that a number z is a limit point of the spectrum of a normal operator C if either z is a point of accumulation of the spectrum in the topological sense or z is an eigenvalue of C with infinite multiplicity.

Necessary conditions and sufficient conditions for an arbitrary (not necessarily hermitian) operator to belong to X_H were established in [2]. Here are two propositions proved in [2].

- i) Every compact operator on H is in X_H
- ii) If C is a normal operator on H whose spectrum contains n limit points $z_1, z_2 \cdots z_n$ satisfying

$$m_1 z_1 + m_2 z_2 + \cdots + m_n z_n = 0$$

for a set $(m_1 m_2 \cdots m_n)$ of rational positive numbers, then $C \in X_H$.

It was shown also in [2] that conditions a) and b) in (*) are necessary for an arbitrary operator to be in X_H and that a normal operator C in X_H has property c).

We formulate now the main result of this paper:

THEOREM 1. Let N be a normal operator and G be a compact operator on H. The operator M = N + G is in X_H if and only if 0 is in the convex hull of the set of limit points of sp N.

This theorem is a generalization of (i) and (ii). We show now that property (b) is a consequence of (a) for arbitrary operators C. In fact, suppose that C satisfies (a) and that (b) does not hold. Then by the Toeplitz-Hausdorff theorem that the numerical range of an operator is convex there exist a real number θ and two operators C_1 and C_2 such that

$$\operatorname{Re}(e^{i\theta}C) = \operatorname{Re}(e^{i\theta}C_1) \oplus \operatorname{Re}(e^{i\theta}C_2)$$

 $\operatorname{Re}(e^{i\theta}C_1)$ has a finite dimensional domain and that

$$\inf_{\|x\|=1} \operatorname{Re}(e^{i\theta}C_2 x, x) = \inf_{\|x\|=1} \left(\operatorname{Re}(e^{i\theta}C_2) x, x \right) > 0$$

where Re $A = \frac{1}{2}(A + A^*)$. On the other hand we obtain from (a) that the sequence

$$\sum_{j=1}^{n} ((\operatorname{Re}(e^{i\theta}C))e_{j}, e_{j}) = \operatorname{Re} \sum_{j=1}^{n} (e^{i\theta}Ce_{j}, e_{j})$$

is bounded. This contradicts the equivalence of (a) and (b) in the case of the hermitian operator $Re(e^{i\theta}C)$ (which follows from (*)).

Let us note that the fact that (b) is a consequence of (a) for arbitrary operators C can also be proved directly by a method similar to that used in the proof of corollary 2 in [3].

Since, as it was shown in [2], (b) and (c) are equivalent for normal operators one has, as a conclusion, the following generalization of Theorem (*).

THEOREM 2. Let C be a normal operator and G be a compact operator on H. C + G is in X_H if and only if C satisfies the three equivalent conditions (a), (b) and (c).

2. Proof of Theorem 1. Suppose that M is in X_H and that 0 is not in the convex hull of the set of limit points of sp N. Therefore, N is of the form $N_1 \oplus N_2$ where N_1 is defined on a finite dimensional domain and

$$\inf_{\|x\|=1} \left| (N_2 x, x) \right| > 0$$

It follows that there exists a real number θ such that the hermitian operator $C = \text{Re}(e^{i\theta}N)$ does not satisfy (b). Hence C has not property (c). Since the set o limit points of sp C is also the set of limit points of $\text{Re}(e^{i\theta}M) = C + \text{Re}(e^{i\theta}G)$ (see [4] p. 367) it follows that (c) does not hold for $\text{Re}(e^{i\theta}M)$. On the other hand, since $e^{i\theta}M$ is in X_H one obtains easily that $\text{Re}(e^{i\theta}M)$ is in Y_H . This contradicts Theorem (*).

For the proof of the remaining part of the theorem suppose that 0 is in the convex hull of the set of limit points of sp N. Therefore, there exist three (not necessarily distinct) limit points z_1 , z_2 and z_3 in sp N satisfying.

$$m_1 z_1 + m_2 z_2 + m_3 z_3 = 0$$

for three positive numbers m_1 , m_2 and m_3 with $m_1 + m_2 + m_3 = 1$. Then by Lemma 3 in [2] N is unitary similar to an operator N' on

$$K = H \oplus H \oplus H \oplus H \oplus H \oplus H$$

of the form $P' \oplus Q'$ with

$$P' = \begin{pmatrix} N_1 + z_1 I & 0 & 0 \\ 0 & N_2 + z_2 I & 0 \\ 0 & 0 & N_3 + z_3 I \end{pmatrix}$$

and

$$Q' = \begin{pmatrix} N_4 + z_1 I & 0 & 0 \\ 0 & N_5 + z_2 I & 0 \\ 0 & 0 & N_6 + z_3 I \end{pmatrix}$$

where I is the identity operator on H and N_i is a normal operator having 0 as a limit point of its spectrum for i = 1, 2, 3, 4, 5, 6. M is therefore unitary similar to an operator M' of the form N' + G', where G' is a compact operator on K.

$$P'' = \begin{bmatrix} U_1^* N_1 U_1 + z_1 I & 0 & 0 \\ 0 & U_2^* N_2 U_2 + z_2 I & 0 \\ 0 & 0 & U_3^* N_3 U_3 + z_3 I \end{bmatrix}$$

and

$$Q'' = \begin{bmatrix} U_4^* N_4 U_4 + z_1 I & 0 & 0 \\ 0 & U_5^* N_5 U_5 + z_2 I & 0 \\ 0 & 0 & U_6^* N_6 U_6 + z_3 I \end{bmatrix}$$

It is easily seen that N' is unitary similar to $N'' = P'' \oplus Q''$. There exists, therefore, a compact operator G'' on K such that M' is unitary similar to M'' = N'' + G''.

The equality $m_1 + m_2 + m_3 = 1$ implies the existence of a three by three (complex) numerical unitary matrix $(b_{ij})_{i,j=1}^3$ with

(2)
$$b_{i3} = \sqrt{m_i} \qquad i = 1, 2, 3.$$

Let

$$U = (b_{ij}I)_{i,j=1}^{3}$$

$$V = \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & -I \end{bmatrix}$$

P''' = U*P''U and Q''' = V*U*Q''UV. Since U and V are unitary operators on $H \oplus H \oplus H$, M'' is unitary similar to an operator M''' of the form $(P''' \oplus Q''') + G'''$ where G''' is compact. Moreover, M''' has a matricial representation of the form

$$\begin{bmatrix} P''' + G_{11} & G_{12} \\ G_{21} & Q''' + G_{22} \end{bmatrix}$$

where G_{ij} , i,j=1,2 are compact operators on $H \oplus H \oplus H$. Let

$$Z = \begin{bmatrix} \frac{1}{\sqrt{2}} I_{H \oplus H \oplus H} & \frac{1}{\sqrt{2}} I_{H \oplus H \oplus H} \\ -\frac{1}{\sqrt{2}} I_{H \oplus H \oplus H} & \frac{1}{\sqrt{2}} I_{H \oplus H \oplus H} \end{bmatrix}$$

where $I_{H \oplus H \oplus H}$ denotes the identity operator on $H \oplus H \oplus H$.

Z is obviously a unitary operator on K and an easy computation shows that

$$M^{(4)} = Z^*M'''Z = \begin{bmatrix} \frac{1}{2}(P''' + Q''' + F_{11}) & \frac{1}{2}(P''' - Q''' + F_{12}) \\ \frac{1}{2}(P''' - Q''' + F_{21}) & \frac{1}{2}(P''' + Q''' + F_{22}) \end{bmatrix}$$

where F_{ij} are compact operators.

By Theorem 8 in [2] $M^{(4)}$ is in X_K whenever $P'''+Q'''+F_{11}$ and $P'''+Q'''+F_{22}$ are in $X_{H\oplus H\oplus H}$. Moreover, using (1) and (2) one obtains by computation that $P'''+Q'''+F_{11}$ and $P'''+Q'''+F_{22}$ are both of the form

$$S = \begin{pmatrix} A & B & E_1 + G_1 \\ C & D & E_2 + G_2 \\ E_3 + G_3 & E_4 + G_4 & E_5 + G_5 \end{pmatrix}$$

where G_i are compact and E_i are linear combinations of $U_j^* N_j U_j$ i = 1, 2, 3, 4, 5. Since, by our constructions, M is unitary similar to $M^{(4)}$ and U_j are arbitrary it suffices to prove the next lemma to complete the proof of the theorem.

LEMMA 1. Suppose that N_j , j=1,2,3,4,5,6 are six normal operators such that 0 is a limit point of $\operatorname{sp} N_j$. Then there exist six unitary operators U_j such that S is in $X_{H\oplus H\oplus H}$ for any four operators A, B, C, D, fire compact operators G_i and fire operators $E_i = \sum_{j=1}^6 a_{ij} U_j^* N_j U_j$ where a_{ij} are complex numbers.

PROOF OF LEMMA 1. We begin by citing a known lemma:

LEMMA 2. Let J be a normal operator on H having 0 as a limit point of its spectrum. If $\varepsilon_2 > \varepsilon_3 > \cdots > \varepsilon_n > \cdots$ is a sequence of positive numbers converging to 0 then there exists a sequence R_k , $k = 1, 2, 3, \cdots$ of mutually orthogonal infinite dimensional subspaces of H such that

$$H = \sum_{k=1}^{\infty} \oplus R_k$$

2)
$$R_k$$
 reduces J

and

3)
$$||J/R_k|| < \varepsilon_k \text{ for } k = 2, 3, 4 \cdots$$

(See [1] p. 701-702).

It follows easily from this lemma that H can be written in the form

$$H = \sum_{k=3}^{\infty} \oplus M_k$$

such that the following conditions are satisfied:

- I) M_k are mutually orthogonal infinite dimensional subspaces of H.
- II) There exist 6 unitary operators U_j on H with $U_1 = 1$ such that M_k are reducing subspaces for $U_j^*N_jU_j$, j = 1, 2, 3, 4, 5, 6.

III)
$$||U_j^*N_jU_j/M_k|| < (12(k!))^{-1}$$
 for $j = 1, 2, 3, 4, 56$ and $k = 4, 5, 6 \cdots$.
Let $c > \sup_{i,j} \{|a_{ij}|\}$ and $E_i' = (1/c)E_i$ for $i = 1, 2, 3, 4, 5$.

Then

 II_1) M_k reduces E'_i for $k = 3, 4, 5 \cdots$ and i = 1, 2, 3, 4, 5 and

III₁)
$$||E'_i/M_k|| < \sup_{i,j} \{|a_{ij}|\}/2c(k!) \le (2(k!))^{-1} \text{ for } k = 4,5,6\cdots, \text{ and } i = 1,2,3,4,5.$$

Let $G'_i = (1/c)G_i$ for i = 1, 2, 3, 4, 5 Since G_i are compact, it follows, by Lemma 4.1 in [1], that

$$M_k = L_k \oplus P_k \qquad k = 4, 5, 6 \cdots$$

where L_k and P_k are orthogonal infinite dimensional subspaces of M_k and

(3)
$$\|G_i'x\| < \frac{1}{2(k!)} \|x\|$$

$$\|G_i'^*x\| < \frac{1}{2(k!)} \|x\|$$

for i = 1, 2, 3, 4, 5 and for each $x \neq 0$ in L_k .

Define

$$H_3 = M_3 \oplus \sum_{k=4}^{\infty} \oplus P_k$$

and

$$H_k = L_k$$
 for $k = 4, 5, 6 \cdots$

It follows that

$$H = \sum_{k=3}^{\infty} \oplus H_k$$

and that inequalities (3) and

(4)
$$||E'_{i}x|| < \frac{1}{2(k!)} ||x||$$

$$||E'_{i}*x|| < \frac{1}{2(k!)} ||x||$$

hold for i=1,2,3,4,5 and each $x \neq 0$ in H_k , $k=4,5,6\cdots$. Now, let P_k be the projection of H on H_k for $k=3,4,5,6\cdots$ Define

$$Q_1 = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Q_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and

$$Q_k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & P_k \end{pmatrix} \text{ for } k = 3, 4, 5, 6 \cdots$$

Then Q_k are orthogonal projections of $H \oplus H \oplus H$ for $k = 1, 2 \cdots$, and we have

$$H \oplus H \oplus H = \sum_{k=1}^{\infty} \oplus Q_k(H \oplus H \oplus H),$$

$$Q_1(H \oplus H \oplus H) = H \oplus 0 \oplus 0$$
,

and

$$Q_2(H \oplus H \oplus H) = 0 \oplus H \oplus 0.$$

Let

$$Z_{1} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Z_{2} = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and for $k=3,4,5\cdots$ let Z_k be a linear transformation from $H\oplus H\oplus H$ to $H\oplus 0\oplus 0$ mapping Q_k $(H\oplus H\oplus H)=0\oplus 0\oplus H_k$ isometrically on $H\oplus 0\oplus 0$ and annihilating $H\oplus H\oplus (H\ominus H_k)$. Then, by Lemma 3.1 in [1] S'=(1/c)S is unitary similar to an infinite operator matrix $T=(T_{kl})_{k,l=1}^{\infty}$ on $(H\oplus 0\oplus 0)\oplus (H\oplus 0\oplus 0)\oplus \cdots$ where $T_{kl}=Z_kSZ_l^*$ for $k,l=1,2,3\cdots$.

It is easily seen that for $k = 3, 4, 5, \dots, Z_k$ are of the form

$$Z_k = \begin{bmatrix} 0 & 0 & V_k \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where V_k is an operator on H mapping isometrically H_k on H and annihilating $H \ominus H_k$. The computation of T_{kl} is therefore easy and it yields:

$$T_{kl} = \begin{pmatrix} (E'_k + G'_k) & V_l^* & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ for } k = 1, 2 \\ l = 3, 4, 5, 6 \dots$$

$$T_{kl} = \begin{pmatrix} V_k (E'_{l+2} + G'_{l+2}) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ for } k = 3, 4, 5 \dots$$

and

$$T_{kl} = \begin{cases} V_k(E_5' + G_5') \ V_l^* & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} \text{ for } k = 3, 4, 5 \cdots$$

Let (x;0;0) be any vector in $H \oplus 0 \oplus 0$. Using (3) and (4) one obtains

$$||T_{kl}(x;0;0)|| = ||(E'_k + G'_k)V_l^*x|| \le \frac{1}{l!} ||V_l^*x|| = \frac{1}{l!} ||x|| = \frac{1}{l!} ||x(0;0;0)||$$

for k = 1, 2 and $l = 4, 5, 6 \cdots$;

$$\|T_{kl}^{*}(x;0;0)\| = \|(E_{l+2}^{**} + G_{l+2}^{**}) V_{k}^{*}x\| \le \frac{1}{k!} \|V_{k}^{*}x\| = \frac{1}{k!} \|x\|$$

$$= \frac{1}{k!} \|(x;0;0)\|$$

for $k = 4, 5, 6 \cdots$ and l = 1, 2;

$$||T_{kl}(x;0;0)|| = ||V_k(E'_5 + G'_5)V_l^*x|| \le ||(E'_5 + G'_5)V_l^*x|| \le \frac{1}{l!}||x||$$

$$= \frac{1}{l!}||(x;0;0)|| \text{ for } k = 3,4,5,6 \dots \text{ and } l = 4,5,6,\dots;$$

and

$$\| T_{kl}^*(x;0;0) \| = \| V_l(E_5'^* + G_5'^*) V_k^* x \| \le \| (E_5'^* + G_5'^*) V_k^* x \| \le \frac{1}{k!} \| x \|$$

$$= \frac{1}{k!} \| (x;0;0) \|$$

for $k = 4, 5, 6 \dots$ and $l = 3, 4, 5 \dots$.

Hence $||T_{kl}|| \le \min\left(\frac{1}{k!}, \frac{1}{l!}\right)$ whenever max (k, l) > 3. Then by Theorem 3 in [2] $T \in X_{(H \oplus 0 \oplus 0) \oplus (H \oplus 0 \oplus 0) \oplus +} \dots$ Since S' is unitary similar to T and S = cS', it follows that $S \in X_{H \oplus H \oplus H}$. This completes the proofs of Lemma 1 and Theorem 1.

REFERENCES

- 1. A. Brown, P. R. Halmos and C. Pearcy, Commutators of operators on Hilbert space, Canad. J. Math. 17 (1965), 695-708.
 - 2. M. David, On a certain type of commutator, J. Math. Mech. 19 (1970), 665-680.
 - 3. H. Radjavi, Structure of A*A-AA*, J. Math. Mech. 16 (1966), 19-26.
 - 4. F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publ. Co., N.Y., 1955.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA